Monday, March 25, 2019

quick sort complexity analysis (best case) | best case analysis of quick sort(best case) | T(n) = 2T(n/2) + n

quick sort complexity analysis (best case)


As we  know Recurrence of  quick sort is T(n) = 2T(n/2) + n      eq.1

             we solve it by Master Method
            step1 . compute  nlogba
here we compare eq.1  with T(n) = aT(n/b) + f(n)
          
                        a = 2 ,b=2 , f(n) = n
                       
               nlogba     à  nlog22      à n

step2.  we compare  function f(n)  with nlogba  
               here from eq.1 
                   f(n)    =  n  &
                     nlogba     =   n
i.e          f(n)  and  nlogba  are equal
                  f(n) = θ (nlogba)

so case 2 of Master Method is applied
step3.
T(n) =  θ (nlogba.logn)                            eq.2
put  value of nlogba  à  nlog22  à n   into eq.2
T(n) = θ (nlogn)      Answer

No comments:

Post a Comment

T(n) = 2 T(n/4) + √n | Master Theorem | Master Method | time complexity for recurrence

                                                                     T(n)  = 2 T(n/4) + √n      eq.1 we solve it by Master Method ...